Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 350-361, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38682668

ABSTRACT

CdaA is the most widespread diadenylate cyclase in many bacterial species, including several multidrug-resistant human pathogens. The enzymatic product of CdaA, cyclic di-AMP, is a secondary messenger that is essential for the viability of many bacteria. Its absence in humans makes CdaA a very promising and attractive target for the development of new antibiotics. Here, the structural results are presented of a crystallographic fragment screen against CdaA from Listeria monocytogenes, a saprophytic Gram-positive bacterium and an opportunistic food-borne pathogen that can cause listeriosis in humans and animals. Two of the eight fragment molecules reported here were localized in the highly conserved ATP-binding site. These fragments could serve as potential starting points for the development of antibiotics against several CdaA-dependent bacterial species.


Subject(s)
Listeria monocytogenes , Listeria monocytogenes/enzymology , Crystallography, X-Ray/methods , Binding Sites , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Models, Molecular , Dinucleoside Phosphates/metabolism , Dinucleoside Phosphates/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Phosphorus-Oxygen Lyases/chemistry , Phosphorus-Oxygen Lyases/metabolism , Protein Conformation
2.
Biol Chem ; 404(8-9): 851-866, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37441768

ABSTRACT

Splicing of precursor mRNAs is a hallmark of eukaryotic cells, performed by a huge macromolecular machine, the spliceosome. Four DEAH-box ATPases are essential components of the spliceosome, which play an important role in the spliceosome activation, the splicing reaction, the release of the spliced mRNA and intron lariat, and the disassembly of the spliceosome. An integrative approach comprising X-ray crystallography, single particle cryo electron microscopy, single molecule FRET, and molecular dynamics simulations provided deep insights into the structure, dynamics and function of the spliceosomal DEAH-box ATPases.


Subject(s)
Saccharomyces cerevisiae Proteins , Spliceosomes , Spliceosomes/metabolism , Adenosine Triphosphatases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , DEAD-box RNA Helicases/metabolism , RNA Splicing
3.
Biol Chem ; 404(8-9): 791-805, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37210735

ABSTRACT

Soluble nuclear transport receptors and stationary nucleoporins are at the heart of the nucleocytoplasmic transport machinery. A subset of nucleoporins contains characteristic and repetitive FG (phenylalanine-glycine) motifs, which are the basis for the permeability barrier of the nuclear pore complex (NPC) that controls transport of macromolecules between the nucleus and the cytoplasm. FG-motifs can interact with each other and/or with transport receptors, mediating their translocation across the NPC. The molecular details of homotypic and heterotypic FG-interactions have been analyzed at the structural level. In this review, we focus on the interactions of nucleoporins with nuclear transport receptors. Besides the conventional FG-motifs as interaction spots, a thorough structural analysis led us to identify additional similar motifs at the binding interface between nucleoporins and transport receptors. A detailed analysis of all known human nucleoporins revealed a large number of such phenylalanine-containing motifs that are not buried in the predicted 3D-structure of the respective protein but constitute part of the solvent-accessible surface area. Only nucleoporins that are rich in conventional FG-repeats are also enriched for these motifs. This additional layer of potential low-affinity binding sites on nucleoporins for transport receptors may have a strong impact on the interaction of transport complexes with the nuclear pore and, thus, the efficiency of nucleocytoplasmic transport.


Subject(s)
Nuclear Pore Complex Proteins , Phenylalanine , Humans , Active Transport, Cell Nucleus , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Binding Sites , Phenylalanine/chemistry , Phenylalanine/metabolism
4.
Front Neurol ; 14: 1124886, 2023.
Article in English | MEDLINE | ID: mdl-36846113

ABSTRACT

Nucleoporin (NUP) 85 is a member of the Y-complex of nuclear pore complex (NPC) that is key for nucleocytoplasmic transport function, regulation of mitosis, transcription, and chromatin organization. Mutations in various nucleoporin genes have been linked to several human diseases. Among them, NUP85 was linked to childhood-onset steroid-resistant nephrotic syndrome (SRNS) in four affected individuals with intellectual disability but no microcephaly. Recently, we broaden the phenotype spectrum of NUP85-associated disease by reporting NUP85 variants in two unrelated individuals with primary autosomal recessive microcephaly (MCPH) and Seckel syndrome (SCKS) spectrum disorders (MCPH-SCKS) without SRNS. In this study, we report compound heterozygous NUP85 variants in an index patient with only MCPH phenotype, but neither Seckel syndrome nor SRNS was reported. We showed that the identified missense variants cause reduced cell viability of patient-derived fibroblasts. Structural simulation analysis of double variants is predicted to alter the structure of NUP85 and its interactions with neighboring NUPs. Our study thereby further expands the phenotypic spectrum of NUP85-associated human disorder and emphasizes the crucial role of NUP85 in the brain development and function.

5.
Elife ; 112022 12 13.
Article in English | MEDLINE | ID: mdl-36511780

ABSTRACT

Collapsin response mediator proteins (CRMPs) are key for brain development and function. Here, we link CRMP1 to a neurodevelopmental disorder. We report heterozygous de novo variants in the CRMP1 gene in three unrelated individuals with muscular hypotonia, intellectual disability, and/or autism spectrum disorder. Based on in silico analysis these variants are predicted to affect the CRMP1 structure. We further analyzed the effect of the variants on the protein structure/levels and cellular processes. We showed that the human CRMP1 variants impact the oligomerization of CRMP1 proteins. Moreover, overexpression of the CRMP1 variants affect neurite outgrowth of murine cortical neurons. While altered CRMP1 levels have been reported in psychiatric diseases, genetic variants in CRMP1 gene have never been linked to human disease. We report for the first-time variants in the CRMP1 gene and emphasize its key role in brain development and function by linking directly to a human neurodevelopmental disease.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Animals , Humans , Mice , Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Intellectual Disability/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neuronal Outgrowth , Neurons/metabolism , Muscle Hypotonia/genetics
6.
J Biol Chem ; 298(7): 102144, 2022 07.
Article in English | MEDLINE | ID: mdl-35714772

ABSTRACT

The bacterial second messenger c-di-AMP controls essential cellular processes, including potassium and osmolyte homeostasis. This makes synthesizing enzymes and components involved in c-di-AMP signal transduction intriguing as potential targets for drug development. The c-di-AMP receptor protein DarB of Bacillus subtilis binds the Rel protein and triggers the Rel-dependent stringent response to stress conditions; however, the structural basis for this trigger is unclear. Here, we report crystal structures of DarB in the ligand-free state and of DarB complexed with c-di-AMP, 3'3'-cGAMP, and AMP. We show that DarB forms a homodimer with a parallel, head-to-head assembly of the monomers. We also confirm the DarB dimer binds two cyclic dinucleotide molecules or two AMP molecules; only one adenine of bound c-di-AMP is specifically recognized by DarB, while the second protrudes out of the donut-shaped protein. This enables DarB to bind also 3'3'-cGAMP, as only the adenine fits in the active site. In absence of c-di-AMP, DarB binds to Rel and stimulates (p)ppGpp synthesis, whereas the presence of c-di-AMP abolishes this interaction. Furthermore, the DarB crystal structures reveal no conformational changes upon c-di-AMP binding, leading us to conclude the regulatory function of DarB on Rel must be controlled directly by the bound c-di-AMP. We thus derived a structural model of the DarB-Rel complex via in silico docking, which was validated with mass spectrometric analysis of the chemically crosslinked DarB-Rel complex and mutagenesis studies. We suggest, based on the predicted complex structure, a mechanism of stringent response regulation by c-di-AMP.


Subject(s)
Bacterial Proteins , Dinucleoside Phosphates , Adenine/metabolism , Adenosine Monophosphate/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Dinucleoside Phosphates/chemistry , Dinucleoside Phosphates/metabolism
7.
Cell Rep ; 39(9): 110879, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649362

ABSTRACT

The MDM2 oncoprotein antagonizes the tumor suppressor p53 by physical interaction and ubiquitination. However, it also sustains the progression of DNA replication forks, even in the absence of functional p53. Here, we show that MDM2 binds, inhibits, ubiquitinates, and destabilizes poly(ADP-ribose) polymerase 1 (PARP1). When cellular MDM2 levels are increased, this leads to accelerated progression of DNA replication forks, much like pharmacological inhibition of PARP1. Conversely, overexpressed PARP1 restores normal fork progression despite elevated MDM2. Strikingly, MDM2 profoundly reduces the frequency of fork reversal, revealed as four-way junctions through electron microscopy. Depletion of RECQ1 or the primase/polymerase (PRIMPOL) reverses the MDM2-mediated acceleration of the nascent DNA elongation rate. MDM2 also increases the occurrence of micronuclei, and it exacerbates camptothecin-induced cell death. In conclusion, high MDM2 levels phenocopy PARP inhibition in modulation of fork restart, representing a potential vulnerability of cancer cells.


Subject(s)
DNA Replication , Tumor Suppressor Protein p53 , DNA/genetics , DNA Damage , DNA Primase/metabolism , Tumor Suppressor Protein p53/metabolism
8.
Biomolecules ; 11(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34680140

ABSTRACT

Many multicellular organisms specify germ cells during early embryogenesis by the inheritance of ribonucleoprotein (RNP) granules known as germplasm. However, the role of complex interactions of RNP granules during germ cell specification remains elusive. This study characterizes the interaction of RNP granules, Buc, and zebrafish Vasa (zfVasa) during germ cell specification. We identify a novel zfVasa-binding motif (Buc-VBM) in Buc and a Buc-binding motif (zfVasa-BBM) in zfVasa. Moreover, we show that Buc and zfVasa directly bind in vitro and that this interaction is independent of the RNA. Our circular dichroism spectroscopy data reveal that the intrinsically disordered Buc-VBM peptide forms alpha-helices in the presence of the solvent trifluoroethanol. Intriguingly, we further demonstrate that Buc-VBM enhances zfVasa ATPase activity, thereby annotating the first biochemical function of Buc as a zfVasa ATPase activator. Collectively, these results propose a model in which the activity of zfVasa is a central regulator of primordial germ cell (PGC) formation and is tightly controlled by the germplasm organizer Buc.


Subject(s)
DEAD-box RNA Helicases/genetics , Ribonucleoproteins/genetics , Zebrafish Proteins/genetics , Adenosine Triphosphatases/genetics , Animals , Cytoplasm , Germ Cells/growth & development , Germ Cells/metabolism , Oocytes/growth & development , Oocytes/metabolism , Protein Binding/genetics , RNA/genetics , Zebrafish/genetics
9.
Hum Mol Genet ; 30(22): 2068-2081, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34170319

ABSTRACT

Primary autosomal recessive microcephaly and Seckel syndrome spectrum disorders (MCPH-SCKS) include a heterogeneous group of autosomal recessive inherited diseases characterized by primary (congenital) microcephaly, the absence of visceral abnormalities, and a variable degree of cognitive impairment, short stature and facial dysmorphism. Recently, biallelic variants in the nuclear pore complex (NPC) component nucleoporin 85 gene (NUP85) were reported to cause steroid-resistant nephrotic syndrome (SRNS). Here, we report biallelic variants in NUP85 in two pedigrees with an MCPH-SCKS phenotype spectrum without SRNS, thereby expanding the phenotypic spectrum of NUP85-linked diseases. Structural analysis predicts the identified NUP85 variants cause conformational changes that could have an effect on NPC architecture or on its interaction with other NUPs. We show that mutant NUP85 is, however, associated with a reduced number of NPCs but unaltered nucleocytoplasmic compartmentalization, abnormal mitotic spindle morphology, and decreased cell viability and proliferation in one patient's cells. Our results also indicate the link of common cellular mechanisms involved in MCPH-SCKS spectrum disorders and NUP85-associated diseases. In addition to the previous studies, our results broaden the phenotypic spectrum of NUP85-linked human disease and propose a role for NUP85 in nervous system development.


Subject(s)
Dwarfism/diagnosis , Dwarfism/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Mutation , Nuclear Pore Complex Proteins/genetics , Phenotype , Brain/abnormalities , Child , Child, Preschool , DNA Mutational Analysis , Female , Fibroblasts/metabolism , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Male , Nuclear Pore Complex Proteins/chemistry , Pedigree , Syndrome
10.
Nat Commun ; 12(1): 1210, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33619274

ABSTRACT

Many bacteria use cyclic di-AMP as a second messenger to control potassium and osmotic homeostasis. In Bacillus subtilis, several c-di-AMP binding proteins and RNA molecules have been identified. Most of these targets play a role in controlling potassium uptake and export. In addition, c-di-AMP binds to two conserved target proteins of unknown function, DarA and DarB, that exclusively consist of the c-di-AMP binding domain. Here, we investigate the function of the c-di-AMP-binding protein DarB in B. subtilis, which consists of two cystathionine-beta synthase (CBS) domains. We use an unbiased search for DarB interaction partners and identify the (p)ppGpp synthetase/hydrolase Rel as a major interaction partner of DarB. (p)ppGpp is another second messenger that is formed upon amino acid starvation and under other stress conditions to stop translation and active metabolism. The interaction between DarB and Rel only takes place if the bacteria grow at very low potassium concentrations and intracellular levels of c-di-AMP are low. We show that c-di-AMP inhibits the binding of DarB to Rel and the DarB-Rel interaction results in the Rel-dependent accumulation of pppGpp. These results link potassium and c-di-AMP signaling to the stringent response and thus to the global control of cellular physiology.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Dinucleoside Phosphates/metabolism , Guanosine Pentaphosphate/metabolism , Second Messenger Systems , Bacterial Proteins/chemistry , Hydrolases/metabolism , Models, Biological , Protein Binding , Protein Domains , Signal Transduction
11.
J Med Chem ; 63(14): 7545-7558, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32585100

ABSTRACT

The receptor CRM1 is responsible for the nuclear export of many tumor-suppressor proteins and viral ribonucleoproteins. This renders CRM1 an interesting target for therapeutic intervention in diverse cancer types and viral diseases. Structural studies of Saccharomyces cerevisiae CRM1 (ScCRM1) complexes with inhibitors defined the molecular basis for CRM1 inhibition. Nevertheless, no structural information is available for inhibitors bound to human CRM1 (HsCRM1). Here, we present the structure of the natural inhibitor Leptomycin B bound to the HsCRM1-RanGTP complex. Despite high sequence conservation and structural similarity in the NES-binding cleft region, ScCRM1 exhibits 16-fold lower binding affinity than HsCRM1 toward PKI-NES and significant differences in affinities toward potential CRM1 inhibitors. In contrast to HsCRM1, competition assays revealed that a human adapted mutant ScCRM1-T539C does not bind all inhibitors tested. Taken together, our data indicate the importance of using HsCRM1 for molecular analysis and development of novel antitumor and antiviral drugs.


Subject(s)
Karyopherins/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Fatty Acids, Unsaturated/metabolism , Humans , Karyopherins/chemistry , Karyopherins/metabolism , Mutation , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Exportin 1 Protein
12.
J Biol Chem ; 294(27): 10463-10470, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31118276

ABSTRACT

Cyclic di-AMP (c-di-AMP) is the only second messenger known to be essential for bacterial growth. It has been found mainly in Gram-positive bacteria, including pathogenic bacteria like Listeria monocytogenes CdaA is the sole diadenylate cyclase in L. monocytogenes, making this enzyme an attractive target for the development of novel antibiotic compounds. Here we report crystal structures of CdaA from L. monocytogenes in the apo state, in the post-catalytic state with bound c-di-AMP and catalytic Co2+ ions, as well as in a complex with AMP. These structures reveal the flexibility of a tyrosine side chain involved in locking the adenine ring after ATP binding. The essential role of this tyrosine was confirmed by mutation to Ala, leading to drastic loss of enzymatic activity.


Subject(s)
Bacterial Proteins/chemistry , Listeria monocytogenes/enzymology , Phosphorus-Oxygen Lyases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Cobalt/chemistry , Cobalt/metabolism , Crystallography, X-Ray , Dinucleoside Phosphates/chemistry , Dinucleoside Phosphates/metabolism , Ligands , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Phosphorus-Oxygen Lyases/genetics , Phosphorus-Oxygen Lyases/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
13.
Structure ; 26(12): 1678, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30517886
14.
PLoS Genet ; 14(12): e1007845, 2018 12.
Article in English | MEDLINE | ID: mdl-30543681

ABSTRACT

Nucleoporins build the nuclear pore complex (NPC), which, as sole gate for nuclear-cytoplasmic exchange, is of outmost importance for normal cell function. Defects in the process of nucleocytoplasmic transport or in its machinery have been frequently described in human diseases, such as cancer and neurodegenerative disorders, but only in a few cases of developmental disorders. Here we report biallelic mutations in the nucleoporin NUP88 as a novel cause of lethal fetal akinesia deformation sequence (FADS) in two families. FADS comprises a spectrum of clinically and genetically heterogeneous disorders with congenital malformations related to impaired fetal movement. We show that genetic disruption of nup88 in zebrafish results in pleiotropic developmental defects reminiscent of those seen in affected human fetuses, including locomotor defects as well as defects at neuromuscular junctions. Phenotypic alterations become visible at distinct developmental stages, both in affected human fetuses and in zebrafish, whereas early stages of development are apparently normal. The zebrafish phenotypes caused by nup88 deficiency are rescued by expressing wild-type Nup88 but not the disease-linked mutant forms of Nup88. Furthermore, using human and mouse cell lines as well as immunohistochemistry on fetal muscle tissue, we demonstrate that NUP88 depletion affects rapsyn, a key regulator of the muscle nicotinic acetylcholine receptor at the neuromuscular junction. Together, our studies provide the first characterization of NUP88 in vertebrate development, expand our understanding of the molecular events causing FADS, and suggest that variants in NUP88 should be investigated in cases of FADS.


Subject(s)
Arthrogryposis/genetics , Genes, Lethal , Mutation , Nuclear Pore Complex Proteins/genetics , Alleles , Amino Acid Sequence , Animals , Animals, Genetically Modified , Arthrogryposis/embryology , Arthrogryposis/physiopathology , Consanguinity , Disease Models, Animal , Female , Humans , Male , Mice , Models, Molecular , Muscle Proteins/metabolism , Neuromuscular Junction/physiopathology , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/deficiency , Pedigree , Pregnancy , Protein Conformation , Receptors, Nicotinic/metabolism , Sequence Homology, Amino Acid , Zebrafish/abnormalities , Zebrafish/genetics , Zebrafish/physiology , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
15.
Structure ; 26(5): 785-795.e4, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29606592

ABSTRACT

Recent advances in instrumentation and image-processing software have resulted in a resolution revolution in cryo-electron microscopy (cryo-EM) and a surge in the popularity of this technique. However, despite technical progress and hundreds of structures determined so far, development of standards assessing the agreement between the cryo-EM map and the respective model has fallen behind. Here we establish a validation procedure evaluating this agreement and applied it to a set of 565 cryo-EM structures. Analysis of the results revealed that three-quarters of the validated structures exhibit moderate or low agreement between the map and the corresponding model, mostly due to limited structural features possessed by these maps. Model re-refinement significantly improved the agreement for only one-fifth of the structures, reaffirming the necessity to re-evaluate map resolution. The presented procedure provides an approach to re-estimate the resolution of cryo-EM map areas interpreted by the model.


Subject(s)
Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods , Proteins/chemistry , Crystallography, X-Ray , Databases, Protein , Models, Molecular , Protein Conformation
16.
J Biol Chem ; 293(16): 5781-5792, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29514981

ABSTRACT

Utilization of energy-rich carbon sources such as glucose is fundamental to the evolutionary success of bacteria. Glucose can be catabolized via glycolysis for feeding the intermediary metabolism. The methylglyoxal synthase MgsA produces methylglyoxal from the glycolytic intermediate dihydroxyacetone phosphate. Methylglyoxal is toxic, requiring stringent regulation of MgsA activity. In the Gram-positive bacterium Bacillus subtilis, an interaction with the phosphoprotein Crh controls MgsA activity. In the absence of preferred carbon sources, Crh is present in the nonphosphorylated state and binds to and thereby inhibits MgsA. To better understand the mechanism of regulation of MgsA, here we performed biochemical and structural analyses of B. subtilis MgsA and of its interaction with Crh. Our results indicated that MgsA forms a hexamer (i.e. a trimer of dimers) in the crystal structure, whereas it seems to exist in an equilibrium between a dimer and hexamer in solution. In the hexamer, two alternative dimers could be distinguished, but only one appeared to prevail in solution. Further analysis strongly suggested that the hexamer is the biologically active form. In vitro cross-linking studies revealed that Crh interacts with the N-terminal helices of MgsA and that the Crh-MgsA binding inactivates MgsA by distorting and thereby blocking its active site. In summary, our results indicate that dimeric and hexameric MgsA species exist in an equilibrium in solution, that the hexameric species is the active form, and that binding to Crh deforms and blocks the active site in MgsA.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Carbon-Oxygen Lyases/metabolism , Phosphoproteins/metabolism , Protein Interaction Maps , Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Carbon Cycle , Carbon-Oxygen Lyases/chemistry , Crystallography, X-Ray , Models, Molecular , Phosphoproteins/chemistry , Protein Conformation , Protein Multimerization
17.
Methods ; 125: 63-69, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28668587

ABSTRACT

The splicing of eukaryotic precursor mRNAs requires the activity of at least three DEAD-box helicases, one Ski2-like helicase and four DEAH-box helicases. High resolution structures for five of these spliceosomal helicases were obtained by means of X-ray crystallography. Additional low resolution structural information could be derived from single particle cryo electron microscopy and small angle X-ray scattering. The functional characterization includes biochemical methods to measure the ATPase and helicase activities. This review gives an overview on the techniques used to gain insights in to the structure and function of spliceosomal helicases.


Subject(s)
Cryoelectron Microscopy/methods , Crystallography, X-Ray/methods , RNA Helicases/ultrastructure , RNA Splicing/genetics , Spliceosomes/enzymology , Models, Molecular , Mutation , Protein Conformation , RNA Helicases/chemistry , RNA Helicases/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Ribonucleoproteins, Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Scattering, Small Angle , X-Ray Diffraction/methods
18.
Acta Crystallogr D Struct Biol ; 72(Pt 6): 705-17, 2016 06.
Article in English | MEDLINE | ID: mdl-27303791

ABSTRACT

In eukaryotic cells, the exchange of macromolecules between the nucleus and cytoplasm is highly selective and requires specialized soluble transport factors. Many of them belong to the importin-ß superfamily, the members of which share an overall superhelical structure owing to the tandem arrangement of a specific motif, the HEAT repeat. This structural organization leads to great intrinsic flexibility, which in turn is a prerequisite for the interaction with a variety of proteins and for its transport function. During the passage from the aqueous cytosol into the nucleus, the receptor passes the gated channel of the nuclear pore complex filled with a protein meshwork of unknown organization, which seems to be highly selective owing to the presence of FG-repeats, which are peptides with hydrophobic patches. Here, the structural changes of free importin-ß from a single organism, crystallized in polar (salt) or apolar (PEG) buffer conditions, are reported. This allowed analysis of the structural changes, which are attributable to the surrounding milieu and are not affected by bound interaction partners. The importin-ß structures obtained exhibit significant conformational changes and suggest an influence of the polarity of the environment, resulting in an extended conformation in the PEG condition. The significance of this observation is supported by SAXS experiments and the analysis of other crystal structures of importin-ß deposited in the Protein Data Bank.


Subject(s)
Chaetomium/chemistry , Crystallization/methods , Fungal Proteins/chemistry , beta Karyopherins/chemistry , Ammonium Sulfate/chemistry , Models, Molecular , Polyethylene Glycols/chemistry , Protein Conformation , Scattering, Small Angle , X-Ray Diffraction/methods
19.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 12): 1481-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26625290

ABSTRACT

High conformational flexibility is an intrinsic and indispensable property of nuclear transport receptors, which makes crystallization and structure determination of macromolecular complexes containing exportins or importins particularly challenging. Here, the crystallization and structure determination of a quaternary nuclear export complex consisting of the exportin CRM1, the small GTPase Ran in its GTP-bound form, the export cargo SPN1 and an FG repeat-containing fragment of the nuclear pore complex component nucleoporin Nup214 fused to maltose-binding protein is reported. Optimization of constructs, seeding and the development of a sophisticated protocol including successive PEG-mediated crystal dehydration as well as additional post-mounting steps were essential to obtain well diffracting crystals.


Subject(s)
Cell Nucleus/metabolism , Desiccation , Karyopherins/chemistry , Nuclear Pore Complex Proteins/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , ran GTP-Binding Protein/chemistry , Active Transport, Cell Nucleus , Crystallography, X-Ray , Models, Molecular , Exportin 1 Protein
20.
Int Rev Cell Mol Biol ; 320: 171-233, 2015.
Article in English | MEDLINE | ID: mdl-26614874

ABSTRACT

Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.


Subject(s)
Active Transport, Cell Nucleus , Disease , Nuclear Pore Complex Proteins/metabolism , Animals , Health , Humans , Models, Biological , RNA Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...